消毒工艺对水体中***抗性基因的去除效果

2020-08-22  来自: 山东环科环保科技有限公司 浏览次数:995

-***及其残留会引发***抗性基因污染。***抗性基因被视为一种新型的环境污染物,在环境科研领域受到广泛关注,其分布情况和传播机制成为现今研究的焦点。通过总结水环境中***抗性细菌和抗性基因的分布以及消毒工艺对***抗性基因的去除效果,认为氯消毒相对其他消毒方法在去除***抗性基因中更经济可行,且消毒处理可以影响抗性基因的接合转移率,从而对抗性基因的水平转移起到抑制作用,并可能进一步影响到***抗性基因的传播和扩散。

***抗性基因(antibiotic resistance genes,ARGs)是能对***产生抗性的基因,是微生物,包括病原微生物,耐药性形成和扩散的物质基础,是一类新型环境污染物。它能在微生物包括病原微生物间传播,还可从细菌、人类散播源和动物源等传播扩散到自然环境和饮用水系统中。

甚至ARGs能通过携带抗性基因的质粒等可移动遗传元件进入人体,致使***疗效下降,细菌感染的治疗更加棘手。有报道世界上每年因抗结核杆菌受影响人数达50万,欧盟每年约2.5万人死于感染多重抗性细菌,美国每年约6.3万人死于医院获得性细菌感染。目前临床上使用的所有***几乎都存在其抗性细菌(antibiotic resistance bacteria,ARB),甚至出现“超级细菌”,如“新德里.梅塔洛一号”(NewDelhi-Metallo-1,NDM-1)。因此,ARGs极可能引发公共健康危机。

环境中ARGs主要产生于医疗和畜牧业长期滥用或误用***,从而使水体、土壤、活性污泥等环境介质成为ARB或ARGs的源和汇。目前,已有大量报道在水环境、土壤、沉积物中检测到ARGs,甚至空气中也检测到ARGs。这些ARGs可***存在于环境中,并且在携带ARGs的微生物死亡后,释放到环境中的裸露的DNA分子***终又可通过基因重组转入其它微生物而使其具有抗性,给人类和动物安全带来潜在威胁。

特别是水环境已成为ARGs散播的重要介质,也是ARGs的重要贮存库之一。本文阐述了ARGs在水环境中的分布,总结了目前水处理工艺中消毒对ARGs的去除效果,并探讨了消毒处理对其传播扩散的影响机制。

1、ARGs在水环境中的分布及传播扩散

ARGs和ARB已被证明在地表水、市政污水污水处理厂出水以及饮用水中普遍存在,且种类繁多,迄今已在各种水体中检测出上百种ARGs。例如在北美、欧洲、东亚和东南亚等地区的9个***饮用水、海水、地表水、医疗废水、化粪池及污水处理厂检测出大环内酯类(如aphA1、aphA2、aadA1)、磺胺类(如dfrA12、dfrA17、sulI)、βu内酰胺类(如blaTEM-1、blaOXA-1、blaPSE-1)、***类(如tetA、tetH、tetJ、tetY、tetZ)、青霉素类(如mecA、penA)和大环内酯类(如ermA、mphA)等多达50种ARGs(表1)。

一般认为水环境中的这些ARGs主要通过医疗和水产养殖废水直接进入地表水体,也可由粪便施肥使其***-入到土壤环境,再随雨水等地表径流渗透到地下水中。因此,ARGs在水环境中广泛分布,特别是污水处理厂,由于含***和ARB的废水直接排入其中而富集大量ARGs,成为ARGs集聚和传播的一个重要媒介。

如Su等从污水厂分离到的98.4%的菌株对检测的***具有抗性,90.6%的菌株至少对3种***表现出抗性。水体环境中这些ARB和ARGs的存在不仅会威胁到饮用水安全,也可能影响到水资源的循环利用。研究发现,用淡水和处理后废水灌溉过的土壤均检测出高水平的***抗性。可见,水环境中ARGs普遍存在且可能对人类健康和环境生态带来影响。

表1水环境中的ARGs

消毒工艺

ARGs主要通过垂直基因转移(vertical gene transfer,VGT)和水平基因转移(horizontal gene transfer,HGT)两种方式进行传播扩散。垂直基因转移是依靠微生物亲代之间的分裂生殖进行;水平基因转移则是ARGs通过接合(conjugation)、转化(transformation)、转导(transduction)、转座以及细菌溶源性基因转移等过程发生转移,从而使另一菌株获得抗性的过程,它是水体环境中ARGs转移扩散的重要方式。

早在20世纪40年代就有微生物水平基因转移的描述,并提出HGT的发生是由选择性压力和生物进化产生的一种普遍现象。如有研究发现携带***类抗性基因的质粒在大肠埃希氏菌(Escherichiacoli)和气单胞菌(Aeromonasspp.)之间进行转移,另外,还观察到耐万古霉素肠球菌(vancomycin-resistant Enterococcus,VRE)与耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)间抗性基因转移现象。

其中,HGT对ARGs通过水传微生物进行传播扩散起到重要作用。正是由于水平基因转移的存在致使ARGs不仅可以在水体环境中从亲代传递给子代,还可以在同种属或不同种属微生物间进行基因传递。甚至在细菌、真菌、病毒和真核生物基因组均观察到基因的水平转移。因此,水体环境中ARGs的存在及其通过水传微生物的转移扩散给人体健康和水的生物安全性带来隐患。

ARGs作为新型的环境污染物在水环境中可通过水传微生物进行散播。研究发现,在水处理过程中水传微生物携带ARGs不仅会使水体中ARGs的浓度增加,还可能进入到水源水和给水系统。Zhang等已在饮用水系统中广泛检测到ARB和ARGs,也有报道在大型给水厂中检测到9个种或属的ARGs且出现较高丰度。

而参与城市水循环的地表水更是扩散致病微生物和ARGs的重要载体之一。因此,如何有效去除和控制水环境中的ARGs需要重-点关注。而消毒是杀灭水中对人体健康有害的致病微生物的重要方式,可防止通过饮用水传播疾病。也是生活饮用水安全、卫生的***后保障。特别是氯消毒因其具有经济和***的特性,因而被广泛应用于废水和饮用水消毒。

2、消毒对ARGs和(或)ARB丰度的影响

消毒通常可以降低出水中的细菌总量,从而对ARGs的削减起到***作用。但对ARGs的去除效果还会受消毒方式等影响。目前,国内外使用的消毒方法包括化学消毒法(如卤素消毒剂、臭氧和***等)、物理消毒法(如膜过滤截留微生物)和光化学消毒法(如紫外线)以及电化学消毒法。

广泛应用的主要有氯消毒、二氧化氯消毒、臭氧杀菌和紫外线照射及氧化消毒等,尽管这些消毒方法一般都能在水处理过程中去除部分ARB或ARGs,但在污水处理厂的出水中它们的检出率仍然较高,且相对总量和种类在出水中变化不大(表2),甚至出现ARGs相对丰度升高现象。

例如氧化和UV消毒对ARGs的去除几乎没有效果,对少数ARGs去除率能达到1~2个数量级,但氯消毒对ARGs的去除可以达到2~3个数量级,而消化处理、人工湿地及其它非消毒处理对ARGs的去除***多达到1个数量级。

由于ARGs的去除率不仅受消毒方法的影响,还会受到细菌携带抗性类型、消毒剂量和多种消毒方法结合使用等多种因素影响,因此很难明显降低或***清除ARGs污染。如Xu等用高通量定量PCR检测不同水处理工艺的给水厂出水时发现两给水处理厂经消毒处理的出水中ARGs的相对丰度都提高了。

因为一般的给水厂或污水厂处理过程基本没有专门针对去除ARGs而设计的工艺,且水体中ARGs的含量还可能受补给、水量、季节变化、用途及流经地区等因素影响,因此物理法、化学法和生物法对ARGs的去除效果并不明显。由于目前消毒工艺对ARB和ARGs的控制效应数据也还较少,所以难以提出较有效的方法和途径来遏制ARGs的散播。

表2不同处理方法对ARB、ARGs的去除效果

消毒工艺

3、消毒对ARGs水平转移的影响机制

消毒可对细菌的接合效率产生作用而影响到ARGs水平转移。如Guo等发现低UV剂量(达到8mJ/cm2)对接合转移频率能产生影响,但影响很小,而低氯消毒剂量(达到40mgClmin/L)能明显提高接合转移的频率2到5倍,同时发现高剂量的UV(>10mJ/cm2)或氯消毒(>80mgClmin/L)下ARGs转移的频率均相对降低。

Lin等也对UV和氯处理对ARGs的转移率进行了研究,发现UV和低水平氯消毒处理都能降低接合效率。表现为当UV剂量(5~20mJ/cm2)逐渐增加时,转移率逐渐降低,而氯消毒处理时,转移率没有变化(氯剂量为0.05~0.2mg/L)或转移率较低甚至低于检出限(氯剂量为0.3~0.5mg/L)。可见,UV和氯剂量较低对ARGs的水平转移几乎没有影响,当UV剂量在10~20mJ/cm2随着剂量的增加能使ARGs的转移率逐渐降低。

消毒对ARGs水平转移影响的具体机制有:

一是通过降低供体细菌的存活率,从而降低接合转移率;二是使细胞渗透性发生变化。研究发现氯消毒产生的氯胺能刺激细菌改变细胞渗透性,使接合细胞的表面会出现更多的菌毛,提高ARGs的接合转移率,从而促进ARGs的水平基因转移;三是抑制相关转移基因的表达。

如在较低余氯(0.05~0.2mg/L)可能对鞭毛基因(flagellargene,flgC)、膜外蛋白基因(anoutermembraneporingene,ompF)和DNA转移相关的基因(aDNAtransport-relatedgene,traG)的表达产生抑制,从而降低水平基因转移率;四是通过集聚不同质粒、插入序列和整合子,从而提高ARGs水平基因转移的发生。

如Shi等在给水厂发现ampC、aphA2、blaTEM-1、tetA、tetG、ermA和ermB基因氯消毒后发生了富集,并通过宏基因组分析认为饮用水氯化处理确实能富集多种ARGs,同时质粒、插入序列和整合子等与ARGs的水平转移相关的可移动遗传元件也会发生集聚。

可见,消毒处理时消毒剂的类型及剂量对ARGs的水平转移能起到促进作用也可能产生抑制,同时,消毒时间也会对其产生影响。并且,消毒处理对ARGs和可移动遗传元件的富集作用也能进一步促进ARGs的水平基因转移。

4、总结与展望

研究发现,ARGs污染通过HGT进行传播扩散对我们人类和动物的影响甚至远远超过***残留本身产生的影响。因为基因污染不同于一般环境污染物,其具有遗传性且一旦散播到环境中难以控制和消除,对人类和生态环境的影响将是长期的和不可逆的。

因此,如何有效预防和降低其转移扩散带来的环境影响是一项重要课题。本文分析了水环境中ARGs的广泛分布,指出水体已成为ARGs汇聚和扩散的重要介质,发现消毒在水处理中对ARGs的去除能起到***作用,但效果不明显,甚至会出现消毒处理后ARGs相对丰度升高现象,即消毒能降低ARGs的***量,但相对丰度会增加。

并认为消毒能通过影响细菌的接合效率、使细胞渗透性发生变化和抑制相关转移基因的表达以及对ARGs和可移动遗传元件富集而对ARGs的水平转移产生作用。表现为UV剂量低于20mJ/cm2时,对ARGs的水平转移影响较小,甚至出现降低水平基因转移率;而氯消毒剂量达到40~80mgClmin/L时,能对ARGs的水平转移起到促进作用。

目前,针对水环境中ARGs的去除,较多已有的研究只是检测水环境中消毒后ARB或ARGs的丰度变化,很少报道消毒对水环境中ARGs去除影响的具体机制。虽然也有关于多种消毒方法对ARGs去除的对比及机制探讨,但还是难以很好揭示水中较高的ARB或ARGs比例,特别是在实际消毒过程中消毒及其副产物对ARGs的作用规律仍需进一步探究。

另外,对于不同环境介质中ARB、ARGs及可移动遗传元件的检测与表征大体包括传统微生物培养法和分子生物学方法,但相关采样、数据分析和结果表达等需要进一步建立和完善,使其更加标准化和系统化,也方便在不同方法和实验室条件下对所得研究结果进行比较。

关键词: 消毒工艺   ***